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ABSTRACT 

Simulation modeling is an increasingly popular and effective tool for analyzing 
transportation problems, which are not amendable to study by other means. We examine 
the need for parallel or distributed simulation approaches from the need for 
computational speed-ups, availability of options towards that, and then at the need to 
distribute the effort to develop network simulation contexts and datasets. After an 
overview of the general techniques for the distributed discrete-event simulation and 
previous efforts on the distributed traffic simulation, we present the general architecture 
of the proposed distributed modeling framework. Two categories of modeling strategies, 
namely, light global control / independent subnets vs. heavy global control / coordinated 
subnets are described. We have implemented the distributed scheme of light global 
control / independent subnets and the implemented details, such as communication 
techniques and vehicle transferring across the boundary of two subnets are discussed. 
Unlike the previous studies using the dedicated high performance machines, our efforts 
are to utilize the low-cost networked PCs that are commonly available. By using the API 
supported by off-the-shelf Paramics software, we are able to distribute the computational 
load of microscopic simulation to multiple single-processor PCs without access the 
proprietary source codes of the simulation program. Performance testing and analysis of 
the implemented prototype demonstrate that the proposed framework is very promising. 
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EXECUTIVE SUMMARY 

Although parallel computing capability of Paramics is critical to large scale traffic 
simulation, Paramics Parallel is not commercially available at present. The goal of this 
project is to develop a software system, using WinSocket communication protocol, to 
allow Paramics user to distribute computation load demanded by large-scale microscopic 
traffic simulation over a number of homogeneous processors. The parallel environment 
for Paramics could be either a multi-processor machine, with shared memory or 
networked workstations connected by Ethernet. The first one usually has less 
communication overhead than the second since the data transmitting speed of computer 
BUS is faster than that of Ethernet. In this project, we use the low-cost networked PCs 
because they are commonly available. 
 
Distributed computing systems predominantly use client-server model. Under this model, 
one processor called the client coordinates the other processors in the system, called 
servers, to function as a single computational unit. Coordination is performed through the 
message passing among the client and the servers. Therefore, the general distributed 
architecture will include at least a controller (client) and several sub-network simulators 
(severs).  Although the controller may have various tasks related to coordinating the 
traffic simulation itself, the essential task from a computational architecture standpoint is 
the synchronization of the time in each sub-network, either at every simulation time-step 
or at specified intervals of times. Depending on different simulation strategies, the 
controller-simulator architecture could lead to different styles of design, including light 
global control / independent subnets and heavy global control / coordinated subnets, as 
described in the following.  
 
The light global control / independent subnets design is the simple form of distributed 
simulation. In this case, each sub-network simulator has its own origin-destination 
demand matrix and its own route tables, but its simulation clock time is synchronized by 
the controller.  In other words, if the time synchronization from the controller is removed, 
each sub-network simulator should be able to perform its simulation independently.  The 
only task for the controller is to synchronize the time clock for each sub-network. This 
design features easy implementation since the vehicle routing has been taken care by the 
individual simulator. On the other hand, since each simulator knows only the local traffic 
condition in the sub-network, without knowing the big picture of the large network, this 
design may suffer from the unpractical or unrealistic routes taken by some vehicles. 
Therefore the congestion pattern from the simulation may be distorted from reality. 
 
The design with a heavy global controller and coordinated subnets is at the other end of 
the spectrum, compared to the previous design.  In this case, not only will the controller 
synchronize the time clock of simulators but also contain the global abstract network, 
global O-D matrix and global routing table. The controller will control the vehicle 
generation in the sub-networks and the individual vehicles' paths.  The local traffic 
condition in the sub-networks will be reported back to the controller and used in the 
dynamic update of the global routing table.  When a vehicle comes to the boundary of the 
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originating sub-network, the controller will notify the receiving network to generate an 
identical vehicle, and continue to route the vehicle to the destination.  Here, each sub-
network simulator is only used to update the individual vehicle’s location according to 
the car-following, lane-changing and gap-acceptance models, which are the most time-
consuming parts in microscopic simulation. 
 
In this project, we implement the prototype of the distributed modeling framework for the 
light global control / Independent Subnets. Two example networks were built to test the 
performance of the proposed distributed modeling framework. Example network 1 was 
coded based on the real network, but expand artificially for the computational load study. 
The origin real network is part of the Main Street of Logan, UT, including one main 
arterial, 10 signalized intersections and 22 O-D demand zones. We extended the network 
by double the links and O-D demand zones. Example Network 2 was artificially designed 
as a large-scale grid network. The original network is coded with 22 arterials, 120 
signalized intersections, 44 O-D demand zones, and the peak hour demand of the whole 
network is 33840 vehicles. Two scenarios were tested with this grid network. The grid 
network was evenly divided in 2 parts for Scenario 1 and 3 parts for Scenario 2. Testing 
was carried on three desktops, the double Logan network and Scenario 1 of the grid 
network were carried at two desktops each with one 2.8 GHz CPU processor and 1 GB 
RAM. Scenario 2 of the grid network was carried with one additional workstation that 
has 3.2 GHz CPU processor and 2 GB RAM. All of the operation systems are Windows 
XP Professional. Each client computer was carried one part of the origin network in 
Paramics Modeler Version 4.2.1. All other traffic conditions and simulation 
configurations at each simulator are the same. 
 
The speedup results from these testing scenarios are very promising. For the Example 
Network 1, as the synchronized time window increase, the speedup will increase from 
0.73 up to 1.52 with time-step 2 per second and from 1.23 up to 1.65 with time-step 8 per 
second. For the Example Network 2 with Scenario 1, the benefit from the proposed 
distributed modeling framework in this scenario was up to 2.4 with 2 per second time-
step, and up to 2.7 with 8 per second time-step with the 1 minute dynamic feedback 
interval. The reason why the speedup factor is higher than 2 is that the computational 
time for the dynamic feedback update is sub-linear, i.e., the calculation time for the whole 
network for the dynamic feedback may be higher than 2 times comparing that of a 
subnetwork with half size. For Scenario 2, we will get more benefits with more 
distributed servers. However, due to the communication load will be significant increase 
as the number of clients increase, some benefits from the vehicle update will be 
counteracted. Which means the benefit form increasing the number of distributed client 
may be limited.     
 
The research demonstrated in this paper is a light global controller / impendent subnets, 
which is only the first part of this proposed distributed modeling framework. To achieve 
more accurate distributed simulation results, the heavy global controller / coordinated 
subnets  design should be considered in the further research, including develop the 
algorithm for global routing, network decomposition, and etc.  
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INTRODUCTION 

Simulation modeling is an increasingly popular and effective tool for analyzing 
transportation problems, which are not amendable to study by other means. In the 
transportation simulation field, there is some general agreement that micro-simulation, 
i.e., a computational resolution down to the level of individual travelers, is now a viable 
alternative and may be the only answer to a wide variety of problems.  A traffic simulator 
for dynamic traffic management plays two distinct roles: as an off-line evaluation / 
design tool and as an on-line control / guidance tool. Both roles could be computationally 
intensive and demand fast simulator to fulfill their tasks.  The need for parallel or 
distributed simulation approaches can be understood from examining the need for 
computational speed-ups, availability of options towards that, and then at the need to 
distribute the effort to develop network simulation contexts and data sets, as below. 
 
The need for faster simulations: 
 

Three primary types of simulation applications immediately show the need for faster 
simulations: 
 

(1) Off-line Planning: Many types of localized traffic jams, which can only be 
produced on the micro-simulation level, affect people’s modal and route choice.  
Furthermore, the environmental impacts of highway design alternatives are 
almost entirely dependent on the details of such congestion phenomena. The 
traditional planning models based on simple link travel time functions are proven 
to show unacceptably erroneous emission impact and many planning studies have 
ended up even in court litigation on this count.  Integrated planning using 
microscopic modeling already requires efficient simulations of large networks of 
the kind needed for planning exercises.  The simulation may have to loop several 
times back and forth between a route planning and a micro-simulation, thus 
producing a need to execute the micro-simulation several times instead of only 
once until a result is achieved. 

(2) Online Control/Guidance and Emergency modeling: The online simulation 
approach is motivating a new realm of traffic control opportunities to influence 
the dynamic traffic conditions in congested networks. However, online simulation 
applications such as prediction for traffic control require the model to run much 
faster than real time. Existing sequential simulation processing in a single 
processor computation environment does not meet the intensive computational 
requirement for online data processing, especially in the case of modeling for 
real-time operations such as rerouting around accident sites.  This is even more 
important if modeling is to be used for emergency management requiring area-
wide evacuations. 

(3) Monte Carlo Analysis: The apparent global stochasticity of traffic is captured in 
most modern simulation approaches. In order to generate credible results, 
multiple simulation runs are a must.  There is a potential danger of analysts not 
repeating the simulations enough times, and using spurious results in making 
potentially costly decisions.  Once again, the speed of simulations becomes 
critical.  
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Would future hardware improvements be enough for fast simulations? 
 

Although Moore’s law (the speed of a microprocessor would double 
approximately every 18 months) has been proven remarkably accurate to date (1), with 
the complexity of the systems we are interested in simulating also keep increasing. Given 
the increasing network size requirements for analysis, it would remain impossible in the 
near future for a single processor to provide satisfactory simulation performance.  For 
comprehensive traffic solutions for route-level and area-wide congestion amelioration, 
the analysis network sizes are often several miles or tens of miles in length and breadth.  
That is, networks of even 20 or 30 times the size/area of current (local) analysis networks 
need to be simulated.  Furthermore, for online analysis of multiple solutions, we need 
another order of magnitude speed-up in the operations.  Even a Moore's law extrapolation 
would require more than a decade for such a 100-fold increase in computational 
capabilities on singles computers.  This implies that harnessing additional processors in 
parallel and decomposing the problem domain into sub-domains is an option of promise, 
and perhaps the only solution. 
 

Although dedicated high performance computing systems (for example, shared 
memory multiple-processor workstation) can significantly reduce the computational time, 
most transportation agencies cannot afford them. In addition, a given sequential 
simulation program may have to be rewritten to exploit more parallelism to leverage the 
multiple processors. This will certainly add extra costs for the software development and 
these costs are usually not justified because of the small market. The most optimistic and 
affordable computational environment in the near future for most transportation agencies 
is a network of personal computers (PCs) connected by local area network (LAN). By 
distributing the computational load demanded by large-scale simulation to the 
inexpensive networked PCs, our goal is to relieve the computational burden and speedup 
the simulation.  
 
Need for distributed sub-network schemes for simulation management:     
 

In addition to the above issues, decomposed and distributed simulation schemes 
are a requirement in incrementally developing network data sets and debugging the 
simulation cases in any operational computer environment.  For instance, it is nearly 
impossible to develop a network data set for all of Los Angeles basin or the San 
Francisco bay area without significant decomposition of simulation efforts across 
analysts and modeling personnel.  Ensuring the integrity of the data sets will also require 
techniques that would allow smaller sub-areas to be tested with larger areas that they are 
part of, with the flow-through traffic modeled properly.  To effectively “stitch” together 
sub-network data sets and to test their integrity distributed simulations are required.  In 
other words, the capabilities developed for faster simulations will also yield capabilities 
for managing the simulation data set environment better.  No effective framework with 
such comprehensive approaches to modeling practical networks exists in the traffic 
analysis community as yet.  This is an added practical reason to develop abilities to set up 
simulation frameworks across robust distribution platforms. 
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In this paper, we propose a distributed modeling framework for the large-scale 

microscopic traffic simulation. In our proposed distributed simulation environment, the 
target large network will be divided into sub-networks, and each sub-network will be 
simulated on a separate desktop PC.  Our distributed computing environment consists of 
a network of PCs operating under Windows XP and connected by a 100 Mbps LAN 
within a client –server framework. This type of computing environment is low-cost and 
commonly available to the transportation agencies, therefore the proposed framework can 
be adopted readily. We have selected Paramics (PARAllel MICroscopic Simulation) as 
the simulation platform and developed a software toolkit using Application Programming 
Interfaces (API) to demonstrate the distributed modeling framework.   

 
This paper is organized as follows. We first offer a brief overview of the general 

techniques for the distributed discrete-event simulation. Previous efforts on the 
distributed traffic simulation are also summarized. We then present the general 
architecture of the proposed distributed modeling framework. Two categories of 
modeling strategies, namely, light global control / independent subnets vs. heavy global 
control / coordinated subnets are described. We have implemented the distributed scheme 
of light global control / independent subnets and the implemented details, such as 
communication techniques and vehicle transferring across the boundary of two subnets 
are discussed. Performance testing and analysis of the implemented prototype are 
followed. Finally, we offer concluding remarks and future research directions in the last 
section.  

LITERATURE REVIEW 

Overview of Distributed Discrete-Event Simulation  
 
A simulation model can be viewed as a representation of the physical system under 
simulation. Discrete Event Simulations are characterized by discrete-state models (as 
opposed to continuous –state models) and the event-driven approach. The discrete event 
simulation can be further classified according to how the simulation time advances. In 
time-driven discrete simulation, the simulation time is incremented by a constant time 
step. In the event-driven approach, the increment of simulation time is triggered by the 
next earliest occurring event. If the simulation logic is executed in order of the events’ 
simulated time of occurrence; i.e., the simulation is sequential. If the computational load 
is high, the sequential simulation could be slow. To circumvent this, techniques have 
been developed to “distribute” different parts of a computing task across individual 
processors at the same time, or in “parallel”, and thus reduce the overall time to complete 
the task.      
 

Distributed (or parallel) simulation is an application of distributed computing 
which aims at decreasing the computational time by engaging different processors of a 
multiprocessor system or different computers of a network to share the workload of a 
simulation program when latter is executed (2). Seminal work of parallel discrete-event 
simulation dates back roughly 20 years. There are many conceivable ways of splitting up 
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a dynamic simulation to distribute its work over different processors, such as distributed 
functions, distributed events, and domain decomposition (for a comprehensive review, 
please refer to 11). Among these classes of approaches, the domain decomposition shows 
the greatest potential and is considered the most promising approach to perform 
simulation in parallel.  

 
Domain decomposition is based on the view that a simulation execution is 

equivalent to filling in a two-dimensional region, with one dimension representing the 
simulated time and another dimension the state variables, as shown in Figure 1(a). 
According to this view, the space-time domain can be decomposed along the time 
dimension, as illustrated in Figure 1(b), or along the space dimension, as illustrated in 
Figure 1(c). For space decomposition (or distributed simulation), the simulation model is 
decomposed into a number of sub-models or components in the space domain. Each 
component is assigned a process, where may be run on one processor. This 
decomposition is attractive because it is applicable to any model and shows the greatest 
potential in offering scalable performance in large models. For time decomposition (or 
time parallelism), the domain is partitioned into a number of intervals. Each process is 
assigned an interval and is responsible to compute the values of the state variables within 
that interval. With this approach, the simulation mechanism must ensure that the state of 
the system at the end of one interval match the system state at the beginning of next 
interval.   

  
Microscopic traffic simulation is usually a time-driven discrete-event simulation, 

meaning that the state variables in the simulation, such as vehicle position and speed and 
traffic light status, are updated every constant time step. As we will discuss later, we 
adopt the space decomposition techniques to distribute the simulation across separate 
processors. The time decomposition is not readily applicable but deserves further 
research.  We should note that the terms distributed simulation and parallel simulation are 
synonyms in this paper since we apply the space decomposition approach.  

 

Previous Efforts on Distributed Traffic Simulation 

There are a few traffic simulation applications have adopted distributed computing 
techniques, including Transportation Analysis and Simulation System (TRANSIMS) (3), 
Advanced Interactive Microscopic Simulator for Urban and Non-Urban Networks 
(AIMSUN) (4), and Parallel Microscopic Simulation (Paramics) (5). The distributed 
algorithms are incorporated within the source codes of these applications and the 
computational workload can be shared among different processors or computers. In the 
following, we will briefly review the distributed simulation methodologies of 
TRANSIMS and AIMSUN, but focus on Paramics we use it our simulation platform in 
this paper.  
 

TRANSIMS is an integrated system of travel forecasting models designed to give 
transportation planners information on traffic impacts, congestions, and pollution. 
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Distribution implementation in TRANSIMS is based on a domain decomposition 
principle, where the network is partitioned into domains of approximately equal size, 
with each CPU of the distributed computer responsible for one of these domains (6). The 
microscopic simulation procedure uses a cellular automata (CA) technique for 
representing driving dynamics, and it is reported that using CA helps with the design of a 
distributed simulation update. 

 
AIMSUN is a microscopic simulation program originally developed as a 

sequential, but later reported to distributed computers (4). For distributed simulation 
implementation, AIMSUN uses a sequence of instructions that executed within the 
context of a process to handle a group of entities that need to be updated at every time 
step. A process can be executed in distributed by the multiple processor/computer system. 

Paramics Simulation Tools 

Paramics is a suite of microscopic simulation tools used to model the movement and 
behavior of individual vehicles on urban and highway road networks (7). It simulates the 
components of traffic flow and congestion, and presents its graphical animation output 
simultaneously for traffic management and road network design. One important feature 
of Paramics is that it allows the user to customize many features of underlying simulation 
model through API. In general, the API functions can be used to override and extend the 
default functionalities or logic, and obtain and set the simulation parameters from 
Paramics. Through the API, relevant communication functions are programmed to 
interface with Paramics. In addition, Paramics is able to generate unique vehicle that all 
of its parameters, e.g. vehicle type, initial speed, releasing time, driver aggressive, and 
etc., are defined by the user, hence it is used to transfer identical vehicles from one sub-
network to another sub-network in this research. Comparing with other traffic simulators, 
the new Paramics Version 4 has undergone a significant overhaul. The new V4 API is 
more structured, easier to use, and inherently safer. The breadth of V4 API has also been 
extended. So Paramics V4 is selected to test the proposed methodology in this paper. 
 

Paramics was developed originally for a shared-memory Connection Machine 
CM-200 with 16,000 processors in 1992, using a data-distributed approach and being 
able to simulate approximate 200,000 vehicles on 20,000 miles of road lanes (5). To 
make good use of CM-200, the data must be in a parallel array form so that operations 
can occur in parallel on the elements of the array. The approach used to build a parallel 
data framework for the simulation process was to associate a parallel item of data with 
each link in the network. However, with more complex vehicle dynamics, the artificial 
constraints imposed by the parallel data structure for CM-200 become increasingly 
significant.  

 
In 1995, based on the previous success, Paramics was further developed using 

message-passing interfaces (MPI) and was targeted on a 256-node CRAY T3D (5). This 
solution, named as Paramics-MP, could model 120,000 vehicles at three times the real-
time rates on 32 nodes of the T3D. Paramics-MP is made up of a number of components: 
the simulator is the computational working unit; the concentrator gathers information 
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from simulator elements and merges it into a single data stream to the visualizer; the 
visualizer is the visualization module and runs on an SGI graphic workstation; the control 
panel is an extended graphical user interface, communicating with the visualizer and 
concentrator. 

 
Another notable work on the Paramics parallelization is from the group at the 

National University of Singapore (2). The idea was to divide the network into several 
regions and simulate under different instances of the program simultaneously, allowing 
transfer of vehicles at the boundaries of different regions. The method was implemented 
in Paramics API on a multi-processor UNIX System. Testing was carried out on a Sun 
E3500 Server system with 4 processors (450 MHz each) and shared memory (3GB 
RAM). They reported that the results showed an increase in speed ranging from 1.50 to 
2.25 times when using two processors and from 1.75 to 3.75 times when using three 
processors, compared with the speed of simulation without distributed execution. 

 
It must be noted that the above parallel simulation efforts are quite different in 

nature with what is proposed here.  The majorities of them are targeted on the dedicated 
high performance system with multi-processor and share memory running UNIX system. 
Cares must be taken for the programming of a parallel code to prevent simultaneous 
access of same data in the share memory. The realization of distributed simulation 
usually requires the access the proprietary source codes of simulation software. Instead, 
our efforts are to utilize the low-cost networked PCs that are commonly available. By 
using the API supported by off-the-shelf Paramics software, we are able to distribute the 
computational load of microscopic simulation to multiple single-processor PCs without 
access the proprietary source codes of the simulation program. The methodology 
proposed in this paper is a distributed modeling framework especially suitable for path-
level computations across sub-network simulations.  

DISTRIBUTED MODELING FRAMEWORK 

General Architecture 

Before deciding the distributed architecture, CPU time consumed at each stage of the 
simulation process needs to be measured in order to identify which of them should be 
distributed. From the experience of parallelization efforts other traffic simulation 
software and also verified by the computation load study later in this paper, individual 
vehicle updating at each time step is most time consuming, and traffic detection and 
control is the second. Therefore, the basic distributed architecture is to decompose the 
large network into several sub-networks, and each sub-network will be simulated on a 
separate desktop PC. 

 
Distributed computing systems predominantly use client-server model. Under this 

model, one processor called the client coordinates the other processors in the system, 
called servers, to function as a single computational unit. Coordination is performed 
through the message passing among the client and the servers. Therefore, the general 
distributed architecture will include at least a controller (client) and several sub-network 
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simulators (severs).  Although the controller may have various tasks related to 
coordinating the traffic simulation itself, the essential task from a computational 
architecture standpoint is the synchronization of the time in each sub-network, either at 
every simulation time-step or at specified intervals of times. To synchronize the 
simulation time, the controller will have to be able to start and stop the sub-network 
simulation at any time.  As an example of the type of traffic simulation issues to be 
handled by the "master network" simulation in the controller, consider a large network 
divided into several sub-networks, where there are some boundary zones existing in two 
or more sub-networks. A destination zone in one sub-network may correspond to an 
origin zone in another sub-network.  Therefore, look-up tables such as one containing the 
information of boundary zones and their corresponding ownerships should be established 
in the controller computer. 

 
During a simulation run, the controller and simulators communicate over the 

distributed platform.  The sub-network simulators act as slaves to the controller.  During 
a time step of simulation or certain time interval, a simulator executes a non-blocking 
loop (asynchronous communication) while waiting for a new request from the controller. 
A request is simply a message associated with a specific task.  When the request arrives 
into a sub-network simulator, it starts with an execution of the corresponding sequential 
code. When the request task is completed, a notification is sent back to the controller.  
When all simulators are “checked in”, the simulation master clock advances by one step 
and broadcasts the new times to every simulator in the system.  Each simulator then 
proceeds until it reaches the master clock time. A pictorial description of the scheme to 
be used for distributed processing is shown in Figure 2. Depending on different 
simulation strategies, the controller-simulator architecture could lead to different styles of 
design, including light global control / independent subnets and heavy global control / 
coordinated subnets, as described in the following.  

Light Global Control / Independent Subnets 

The light global control / independent subnets design is the simple form of distributed 
simulation. In this case, each sub-network simulator has its own origin-destination 
demand matrix and its own route tables, but its simulation clock time is synchronized by 
the controller.  In other words, if the time synchronization from the controller is removed, 
each sub-network simulator should be able to perform its simulation independently.  The 
only task for the controller is to synchronize the time clock for each sub-network.  
 

Communication between subnet simulators is required when an object (a vehicle) 
moves from one sub-network to another. A message is sent from the originating simulator 
to the receiving simulator describing the object, and the “ownership” of the objects is 
thus transferred. Once the transfer is confirmed, the vehicle object disappears at the 
destination zone of the originating sub-network, and the corresponding vehicle will be 
generated from the origin zone in the receiving sub-network. The destination of the 
transferred vehicle is set randomly in the receiving sub-network, but the probability of 
selecting a particular destination zone is equal to the ratio of origin-destination demand 
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with total demand generated from the origin zone. Once the destination of the transferred 
vehicle is selected, the transferred vehicle will be taken as one of the vehicles generated 
from this particular O-D demand.  

 
This design features easy implementation since the vehicle routing has been taken 

care by the individual simulator. On the other hand, since each simulator knows only the 
local traffic condition in the sub-network, without knowing the big picture of the large 
network, this design may suffer from the unpractical or unrealistic routes taken by some 
vehicles. Therefore the congestion pattern from the simulation may be distorted from 
reality. 

 
Heavy Global Control / Coordinated Subnets 
 
The design with a heavy global controller and coordinated subnets is at the other end of 
the spectrum, compared to the previous design.  In this case, not only will the controller 
synchronize the time clock of simulators but also contain the global abstract network, 
global O-D matrix and global routing table. The global abstract network is a simplified 
network from the original large network, and used only for routing purposes.  The 
controller will control the vehicle generation in the sub-networks and the individual 
vehicles' paths.  The local traffic condition in the sub-networks will be reported back to 
the controller and used in the dynamic update of the global routing table.  When a vehicle 
comes to the boundary of the originating sub-network, the controller will notify the 
receiving network to generate an identical vehicle, and continue to route the vehicle to 
the destination.  Here, each sub-network simulator is only used to update the individual 
vehicle’s location according to the car-following, lane-changing and gap-acceptance 
models, which are the most time-consuming parts in microscopic simulation. 
 

The benefit from this design is that vehicle’s origin-destination and its path are all 
controlled at the global level, as opposed to the local level in the previous design. In this 
aspect, the design is similar to the simulation over single processor in term of routing, 
with the distinction of updating vehicle’s location over distributed processors.  Although 
the communication load between the controller and simulators is also significant higher 
than that of previous design, which may slow down the simulation. 
 

The heuristic routing approach could be taken to reduce the communication 
overhead.  In this case, the controller will still have the global abstract network, global O-
D matrix and global routing table. Each simulator also has its own local routing table.  
When a vehicle is generated in the sub-network, if its origin and destination belong to 
different sub-network, its temporary destination in the originating sub-network will be 
determined from the global routing table, but its path in the originating sub-network will 
be determined locally from the local routing table. Therefore, instead of routing every 
individual vehicle at the global level, the revised design allows a vehicle’s route 
calculated at the local level.  Significant communication overhead will be reduced in this 
case. However, this heuristic approach doesn’t solve the routing problem in the first 
approach completely in that the vehicle’s temporary destination determined from the 
global routing table may be changed in the dynamic assignment case. 
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Communication Technologies 

There are several communication technologies that are popular used for distributed 
computation, including Distributed Component Object Model (DCOM), Common Object 
Request Broker Architecture (CORBA), and Windows Socket Programming (Winsock).  
 

DCOM (8) is developed by the Microsoft Cooperation based on the Windows 
platform environment. DCOM allows for peer-to-peer communications between 
computers, and it allows for greater flexibility in the Windows environment. DCOM 
allows developers to write to communication services rather than building connectivity 
directly into the applications each time. It serves the same purpose that an Object Request 
Broker (ORB) does in the rival distributed computing framework, the Object 
Management Group's CORBA standard. 

 
The standard CORBA includes three levels, including ORB, public object 

services, and public applications. Generally, an ORB enables communication between 
clients and objects, transparently activating those objects that are not running when 
requests are delivered to them (9). Based on ORB, CORBA defines several public object 
services, like naming service, trading service, event service, and etc. The public 
applications are the framework, which supports the services that be directly used by the 
users. CORBA is supported on almost every combination of hardware and operating 
system in existence. 

 
Windows Sockets enables programmers to create advanced Internet, intranet, and 

other network-capable applications to transmit application data across the wire, 
independent of the network protocol being used. It defines a standard service provider 
interface (SPI) between the application programming interface (API), with its exported 
functions and the TCP/IP protocol stacks (10). Winsock is a lower level but still effective 
communication technique comparing with DCOM and CORBA, which are also based on 
the TCP/IP protocol. Considering the complexity of the implementation of the DCOM 
and CORBA techniques, Winsock programming is employed in the proposed 
methodology. 
 
Load Balancing  
 
Since synchronous communication is used among simulators and controller, each 
simulator can only run as fast as the slowest one.  So a proper and balanced 
decomposition of the network is critical to the overall performance. The computation 
load study later in this paper shows the total computational requirement for a microscopic 
traffic simulation is dominated by the number of vehicles in the network at any time, the 
ideal division of network is to create N regions that each has exactly V/N vehicles, where 
V is total number of vehicles in the simulation and N is the target number of processors. 
The speed-up performance of the distributed processing is also dependent on the 
communication to computation overhead: if there are a large number of communication 
operations for each computational operation, the overall process will reduce in speed .In 
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order to minimize the communication overhead, distributed simulations require 
methodological decomposition of the large network to find a subdivision where there are 
as few boundaries as possible and the computational load is spread evenly across the 
processors. One of our ongoing researches is to design a multi-objective optimization 
program to decompose the large network  

 

Synchronization Mechanism Using Conservative Time Window (CTW) 

Parallel simulation based on discrete-event model fundamentally requires synchronous 
processing at every simulation clock cycle because causality constraints have to be 
observed in order to ensure the correctness of the simulation. Violating causality 
constraint means that the future can affect the past. This can results in anomalous 
behavior and consequently incorrect simulation. It is the responsibility of the 
synchronization mechanism to ensure the proper and correct interaction among the sub-
network simulators.  Synchronization schemes of parallel simulation broadly fall into two 
categories – conservative and optimistic – according to the ways they adhere to the local 
causality constraint (11). Conservative approaches avoid all possible causality errors by 
strictly adhering to the local causality constraint. Optimistic approaches, on the other 
hand, attempt to exploit the nonzero probability of producing no causality error by not 
strictly adhering to the local causality constraint. But the occurrences of causality errors 
may lead to the rollback simulation to restore the simulation to a correct state.   
 
 In the research, we adopt the conservative approach to ensure the causality constraint. 
However, in order to reduce the synchronization overhead, we specify a time window 
that each sub-network simulator is independent within these windows and can be 
processed concurrently. The synchronization work will be done at the end of each 
conservative time window, which is greater or equal to the constant simulation time step. 
The problem is how to choose a proper time window. If the synchronization time window 
is too short, such as the constant simulation time-step, then the faster simulators will 
always waiting the slowest one and the synchronization overhead will make the benefits 
from the distributed simulation less. If the synchronization time is too long, the local 
causality constraint may be significantly violated, meaning that when the vehicle 
transferred from the slower simulators to the faster one, the vehicle may transferred 
behind. The simulation would thus not be carried out correctly.  
 
 To circumvent this problem, we introduce the transfer vehicle forecasting technique. 
Figure 3 shows the vehicle-transfer status between sub-networks. Instead of detecting the 
information and transferring vehicle at the boundary of the sub-networks (Point B), a 
detector is put ahead of the boundary (Point A), collecting and transferring the vehicle 
with a couple of simulation time ahead, called forecasting time here, which depends on 
the distance of the detector to the boundary, the speed of the vehicle, and etc. Then we 
can transfer the vehicle correspond exact to the real world, nor ahead or behind, even in 
the case that the synchronization time clock is not small. 
 



 11 

PERFORMANCE TEST AND ANALYSIS  

Prototype for Light Global Control / Independent Subnets 

Figure 2 shows the prototype of the distributed modeling framework for the light global 
control / Independent Subnets. First, the controller will start the communication client 
and open a socket to listen and send messages, and then all the sub-networks on the 
sever-computers will be loaded through remote control. Meanwhile, the sever-computers 
will automatic establish the connections with the client. After all the sub-networks are 
loaded and all the servers are successful connected with the controller client, Paramics 
will start the simulations simultaneously. During each simulation run, the client and the 
servers will communicate through the Windows Socket platform. There are two types of 
message will be transferred, one is the synchronized information, and the other is the 
vehicle transfer information. The server-computer usually has different simulation speed 
due to variety reasons, such as different sub-networks, different number of vehicles in the 
simulations, different processor configurations, and etc. In order to synchronize all the 
server simulators, the faster simulators need to wait the slower ones after each 
synchronized time window that pre-defined by the user, like 30 seconds. The 
synchronized information is collected by the controller and feedback to the subnet 
simulators using Paramics APIs via the Windows Socket platform. Similarly, once a 
vehicle arrive the boundary of the sub-networks, the vehicle information will be sent 
from the “upstream” simulator, collected and analyzed by the controller, and then 
transferred to the “downstream” simulator. Such communication processes will continue 
until all the servers finish the simulations. Finally, the controller can output the 
simulation results as a whole. If multiple runs needed, the controller can also call the 
server simulators for the next run. 

Example Problems and Test Environment 

Two example networks were built to test the performance of the proposed distributed 
modeling framework. Example network 1 was coded based on the real network, but 
expand artificially for the computational load study. The origin real network is part of the 
Main Street of Logan, UT, including one main arterial, 10 signalized intersections and 22 
O-D demand zones. We extended the network by double the links and O-D demand 
zones as shown in Figure 5(a). For simple analysis, there is only one connector between 
the two distributed main streets, and the demand matrix was also modified 
correspondingly. So there are totally 20 signalized intersections, 42 O-D demand zones in 
this test network. Since the network is so simple that without route choice, the all-or-
nothing assignment method was applied here. Example Network 2, as shown in Figure 
5(b), was artificially designed as a large-scale grid network. The original network is 
coded with 22 arterials, 120 signalized intersections, 44 O-D demand zones, and the peak 
hour demand of the whole network is 33840 vehicles. Two scenarios were tested with 
this grid network. In Scenario 1, the grid network was evenly divided by 2 parts and 
simulated at 2 clients with the proposed distributed modeling framework. So each 
network will be comprised by 16 arterials, 60 signalized intersections, and 32 O-D 
demand zones. The sub-network boundary includes 10 connections or transfer zones. In 
Scenario 2, the grid network was evenly divided by 3 parts with each sub-network 
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include 12 arterials, 40 signalized intersections, and 28 O-D demand zones, distributed 
simulated on 3 server simulators. Sub-networks on server 1 and 3 include 10 connections 
with server 2, and the sub-network on server 2 has 20 connections: 10 with server 1 and 
10 with server 3. 
 

Testing was carried on three desktops, the double Logan network and Scenario 1 
of the grid network were carried at two desktops each with one 2.8 GHz CPU processor 
and 1 GB RAM. Scenario 2 of the grid network was carried with one additional 
workstation that has 3.2 GHz CPU processor and 2 GB RAM. All of the operation 
systems are Windows XP Professional. Each client computer was carried one part of the 
origin network in Paramics Modeler Version 4.21. All other traffic conditions and 
simulation configurations at each simulator are the same. 

Computation Load Study 

Before test the benefit of the distributed modeling framework, a scenario was designed to 
test the computation load of updating vehicle information. The Example network 1 was 
run both with the distributed simulation and non-distributed simulation scheme at 
different time-step, 2 per second till 8 per second. The demand matrix assigned in the 
network is zero or full demand. With zero demand simulation, there is no vehicle update 
in the network and the CPU time are all cost by controller update, network update, 
shortest path update, and etc. From Table 1, we can see that the network load occupied 
almost 30% of the whole demand assigned in the simulation network. The computation 
load for updating vehicle information is occupied near 70% of the CPU computation load. 
Such trend can also be verified from Table 2, where we list the CPU time contribution of 
updating vehicle information with ¼, ½ and full demand by decrease the CPU time with 
zero demand. It can be easily see that the computation time is also doubled when the 
demand is doubled. This study certificated that the total computational load for the 
microscopic traffic simulation is dominated by the number if the vehicles in the network.   

Benefits from the Distributed Modeling Framework 

Table 3 shows the speedup result of the Example Network 1 with the distributed 
modeling framework methodology proposed in this paper. As the synchronized time 
window increase, the speedup will increase from 0.73 up to 1.52 with time-step 2 per 
second and from 1.23 up to 1.65 with time-step 8 per second. We can also see that the 
speedup from distributed simulation will converged around 1.6 times with the time-step 
of 8 per second. Note that the pure computational load of 8 time steps per second is 4 
times of that 2 time steps per second. However, given the fixed synchronization time 
window, the communication overhead is the same for both cases. That’s why we achieve 
more benefits with higher simulation time steps. The status of time-step increase is quite 
similar with the status of the number of vehicle in simulation increase, so from this result 
we can conclude that we will get more benefit from the large-scale network comparing 
with the small size network, it will be verified from the results of the Example Network 2 
below.  
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Figure 7 shows the speedup benefit of Example Network 2 with Scenario 1, the 
large-scale gird network was evenly divided by 2 parts and distributed simulated on two 
desktops. From the figure we can see that as the synchronized time window increase, we 
can achieve more benefits because of the communication overhead is decreased and the 
waiting times of the faster simulations are also decreased. However, the benefits from 
increasing the synchronized time window is not significant, which could be explained 
from the above computation load study that the dominant simulation time consuming is 
vehicle update. In this scenario, the speedup comparing with server 1 and server 2 are 
different. As we mentioned before, all the clients are run as fast as the slowest one, so the 
benefit from the proposed distributed modeling framework in this scenario was up to 2.4 
with 2 per second time-step, and up to 2.7 with 8 per second time-step, which is higher 
than the benefits get form Example Network 1, a small size network.  

 
Another scenario of the Example Network 2 was designed to divide the grid 

network into 3 parts and distributed at three computers. The benefit results comparing 
Scenario 1 and Scenario 2 are shown at Figure 7, both scenarios choose the speedup 
results from the slowest server. This figure shows the same trend as the previous 
examples. An additional conclusion is obviously that we will get more benefits with more 
distributed servers. However, due to the communication load will be significant increase 
as the number of clients increase, some benefits from the vehicle update will be 
counteracted. Which means the benefit form increasing the number of distributed client 
may be limited.     

Consistency between Distributed and Sequential Simulations 

One critical issue in the distributed simulation is the consistency, meaning that the 
distributed simulation has to be consistent with the sequential simulation in terms of 
simulated traffic conditions. In this paper, we only verify the consistency issue with the 
total number arrivals in each zone of both distributed and sequential simulation. Table 5 
shows the number of vehicles that arrived to the destination zones in the distributed 
simulation comparing with the origin demand data. This is a 2-server distributed case 
data results, the data with Italic fonts and gray shading was generated from server 2, and 
the other part was the data from server 1. In Paramics, the user can request the simulator 
release the vehicles strictly according to the demand files. So in the table we can see that 
there is a very little difference between the two columns, and the total arrived number is 
exactly the same. Because the vehicle transferred does not carry its destination of the 
whole network, the destination is assigned according to the proportion of the arrival 
demand at the “downstream” simulators. Hence the total arrived number will have a little 
difference due to the randomness. The result shows in Table 5 verified the consistency of 
our proposed framework.   
 

CONCLUDING REMARKS 

A distributed modeling framework for large-scale network microscopic simulation is 
proposed in this paper. The methodology divide the large network into multiple parts and 
distributed simulate the sub-networks on multiple computers. Windows socket is 
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employed as the communication middle ware to transfer the synchronized time clock and 
vehicle information between the client controller and server simulators. Paramics Version 
4 is selected as the simulation demonstration tools. Two example networks were designed 
to test the performance of the proposed distributed modeling framework. The 
computation load study shows that vehicle update is the domination computation cost of 
simulation. By increasing the time-step and comparing the benefit from the two examples, 
we can conclude that the methodology is suitable for large-scale network. The results also 
shows that more benefits will get by increasing the synchronized time window, but not 
significant. Another conclusion is that we could get more benefits by employed more 
processors, however, part of the benefit will be counteracted by the communication time 
consuming between the controller and simulators. 
 

As mentioned before, the research demonstrated in this paper is a light global 
controller / impendent subnets, which is only the first part of this proposed distributed 
modeling framework. To achieve more accurate distributed simulation results, the heavy 
global controller / coordinated subnets  design should be considered in the further 
research, including develop the algorithm for global routing, network decomposition, and 
etc. These issues will be explored in the subsequent paper. 
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 TABLE 1   Computation Load percentage of those other than Updating Vehicle 
Information. 
 

Simulation Time (sec) 
 Time-step  

(per sec) Zero 
Demand Full Demand 

% Demand  
(veh/hr) 

2 7 21 33 
4 12 38 32 

Distribute
d 

Simulatio
n 8 21 73 29 

6813 

2 11 41 27 
4 21 77 27 

Non-
Distribute

d 
Simulatio

n 
8 35 131 26 

13294 

 



 17 

TABLE 2   Computation Load Contribution of Updating Vehicle Information. 
 

Simulation Time / Vehicle Contribution (sec) 
 Time-step (per 

sec) Zero 
Demand 

¼ 
Demand ½ Demand Full 

Demand 
7 11 14 21 2 

— 4 7 14 
12 20 25 38 4 
— 8 13 26 
21 35 46 73 

Distribute
d 

Simulatio
n 

8 — 14 25 52 
11 19 25 41 2 — 8 14 30 
21 34 45 77 4 — 13 24 56 
35 62 85 137 

Non-
Distribute

d 
Simulatio

n 8 
— 27 50 102 

 



 18 

TABLE 3   Speedup of the Example Network 1. 
 

Time-step 
(per sec) 

Synchronized 
Time Clock 

(sec) 

Distributed 
Simulation 

(sec) 

Non-
Distributed 
Simulation 

(sec) 

Speedup 

10 56 0.73 
20 39 1.05 
30 33 1.24 
40 30 1.37 
50 29 1.41 

2 

60 27 

41 

1.52 
10 111 1.23 
20 94 1.46 
30 88 1.56 
40 84 1.63 
50 84 1.63 

8 

60 83 

137 

1.65 
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TABLE 4  Arrival number of Vehicles Comparing with the Original Demand with a 2-
Server for Grid Network. 
 

Zone Deman
d Arrived Diff. Zone Deman

d Arrived Diff. 

1 710 712 2 21 470 472 2 
2 730 720 -10 22 690 690 0 
3 750 754 4 23 710 714 4 
4 770 763 -7 24 730 732 2 
5 790 789 -1 25 750 739 -11 
6 810 808 -2 26 770 776 6 
7 830 828 -2 27 790 797 7 
8 850 863 13 28 810 804 -6 
9 870 882 12 29 830 821 -9 

10 650 642 -8 30 850 840 -10 
11 650 657 7 31 870 879 9 
12 870 870 0 32 890 882 -8 
13 850 851 1 33 890 882 -8 
14 830 833 3 34 870 877 7 
15 810 823 13 35 850 842 -8 
16 790 794 4 36 830 830 0 
17 770 784 14 37 810 818 8 
18 750 741 -9 38 790 787 -3 
19 730 728 -2 39 770 762 -8 
20 710 714 4 40 750 743 -7 
    41 730 723 -7 
    42 710 713 3 
    43 690 684 -6 
    44 470 477 7 
    Total 33840 33840 0 
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Figure 1: (a) The space-time graph. Simulation execution, which runs from simulated 
time 0 to time t, is equivalent of filling in the shaded area. Possible decomposition with 
respect to (b) space domain and (c) time domain.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 t 

state 
variable

s 

… 

t0 t t2 t3 tp- tp 0 t 

state 
variable

s 

. . . 

0 t 

state 
variable

s 

 (a)   simulation  (b)   simulation  (c)   simulation 

[Filling up this area] 



 21 

 
FIGURE 2   General Distributed Modeling Architecture. 
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FIGURE 3   Transfer Vehicle Forecasting.
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FIGURE 4   Prototype of the Distributed Modeling Framework. 
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FIGURE 5(a)   Example network 1 — Double Logan network. 
 

 
 
 
 
FIGURE 5(b)   Example network 2 — Large-scale grid network. 
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FIGURE 6   Speedup of the Example Network 2 with Scenario 1. 
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FIGURE 7   Speedup comparing with Scenario 1 and Scenario 2 of the Example Network 
2. 
 
 

 


